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Contact is essential for a robot to interact with its environ-
ment. Contact interactions enable robots to navigate the world
and to manipulate objects in their surroundings. That is why
the ability to make and break contact with the environment
safely and effectively is key to robot autonomy. Yet, contact
dynamics presents a number of challenges to current learning
and optimization-based methods. At a low level, controlling
these systems involves high frequency impact disturbances
which require quick reactive control [14, 5, 2]. It also in-
troduces stiff dynamics equations that are hard to capture
with current learning techniques [21]. At a higher level, long-
horizon planning often requires dealing with discrete decisions
[16, 18, 29]. Should I make contact with this object in order
to grasp that one? Optimization over discrete variables is
known to be challenging especially in time-constrained sce-
narios. Policy optimization and reinforcement learning (RL)
techniques [9] have provided a way to control complex dynam-
ical systems involving contact like the OpenAI’s locomotion
environments encoded in MuJoCo [4] and Isaac [15]. However,
current methods often require an extremely large amount of
samples. Indeed, it is common to see RL techniques requiring
millions of simulation steps to obtain satisfactory performance
[9, 26, 24].

The goal of my research lies in addressing these challenges
to be able to quickly and reliably generate robot behaviors
that actively exploit contact interactions with the environ-
ment. Towards this goal my research has focused on three key
questions. First, how to effectively embed contact dynamics
and physics engines in existing learning and optimization
pipelines? Second, how do we leverage differentiable physics
engines for real-time control of robots that make and break
contact with their environments? Third, how can we combine
sampling-based and gradient-based methods for contact-rich
behavior learning?

A. Smoothly Differentiable Physics Engine

In order to effectively integrate physics engines into ex-
isting learning pipelines, we need to differentiate them effi-
ciently. Historically, physics engines were providing gradients
obtained using finite-difference schemes e.g. MuJoCo [28].
However, this method can be computationally costly and does
not scale well with the gradient dimension. Recently, there as
been a push for differentiable physics engines relying on auto-
matic differentiation frameworks e.g. Brax [8], TinyDiff [11],
Drake [27]. These approaches return exact gradients which
are not informative about the broader dynamics landscape.

Fig. 1: The optimization-based policy queries and differentiates
through the physics engine to find the sequence of controls that
optimally tracks the reference trajectory. This policy is demonstrated
on a Unitree Go1 quadruped: stable trotting while being pushed (top),
transitioning from ground to standing against a wall (bottom left), and
placing two feet onto a step (bottom right).

This makes them of little use when integrated in optimization
pipelines. For instance, a gradient-based method relying on
exact gradients would fail on a simple box-lifting task (Fig. 2)
because the gradients are null initially. To resolve this issue, we
introduced Dojo [13], a differentiable physics engine that can
provide smooth gradients. These gradients carry meaningful
information to efficiently solve downstream optimization tasks
such as: policy optimization, planning, system identification
and more. For instance, we can easily solve the box-lifting
task by leveraging the smooth gradients since they capture the
curvature of a broad dynamics landscape.

The method we introduced in Dojo to differentiate through
contact dynamics relied on two key techniques. First, we
formulated the problem of simulating contact between the
robot and its environment as an optimization problem; specifi-
cally a nonlinear complementarity problem (NCP). To reliably
solve the NCP, we devised a custom interior-point method
[19, 3] building upon the Predictor-Corrector algorithm [17].
Second, we leveraged the implicit function theorem (IFT)
[7] to differentiate through the NCP. This differentiation is
computationally cheap and allows us to provide gradients with



Fig. 2: We illustrate the gradient smoothness on a simple system: a
box sitting on the floor (left). The contact dynamics is not smooth
(center) because you need to overcome the force of gravity before
you get any upward motion from the box. The exact dynamics
gradients are discontinuous (right, black curve). Our approach [13]
provides approximated gradients that can reach any desired level of
smoothness by choosing κ the relaxation parameter (right, magenta).

any desired level of smoothness by choosing the relaxation
parameter used in the interior-point method (Fig. 2).

B. Real-Time Control Through Contact

In the previous section, we have provided a way to ef-
ficiently differentiate through contact dynamics. This allows
us to integrate physics engines into learning and optimization
pipelines. In this section, we embed a physics engine inside
a real-time control policy. This results in a general control
policy for systems that make and break contact with their
environments. We introduce Contact-implicit model predictive
control (CI-MPC) [5]. It generalizes linear MPC to contact-
rich settings replacing linear dynamics with dynamics encoded
by a simplified physics engine. In order to find the best
sequence of controls, the MPC algorithm needs to evaluate and
differentiate the dynamics constraints. This means querying
the physics engine and differentiating through it. We have
observed that the gradient smoothness was essential to ensure
successful convergence of the MPC policy.

With this framework, we can track reference trajectories for
a variety of systems involving contact: a Raibert hopper [23],
a quadruped, and a planar biped [22]. We show that this policy
is robust to model mismatch and can respond to disturbances
by discovering and exploiting new contact modes across a
variety of robotic systems in simulation. We also demonstrate
real-time solution rates for CI-MPC and the ability to generate
and track non-periodic behaviours in hardware experiments on
a quadrupedal robot (Fig. 1).

C. Contact-Rich Behavior Optimization

In the previous section, we have seen how to leverage
differentiable physics engines online to build real-time poli-
cies that work on hardware. In this section, we focus on
learning offline contact-rich behavior optimization. First, we
have learned simple locomotion policies for the half-cheetah
[10, 30] and ant [25] robots from OpenAI Gym [4]. This
was done by leveraging the dynamics gradients provided by
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Fig. 3: We synthesize contact-rich manipulation behaviors through
an approach combining gradient-based and sampling-based optimiza-
tion. The robot arm is tasked with manipulating the green object to a
desired pose (light gray overlay). Our simulation framework provides
gradients of both the contact simulation and collision detection. The
grasping plan shown is computed in 1 second on a laptop with an
existing planner [20] requiring smooth gradients.

Dojo [13]. Similarly to Xu’s work [31], we have observed
a significant decrease in the number of samples required to
obtain a satisfactory locomotion behavior. Second, we have
learned contact-rich manipulation plans where we manipulate
an object to a desired location [6] (Fig. 3). We leveraged a
sampling- and gradient-based algorithm proposed by Tao [20].
This algorithm leverages our ability to provide smooth gradient
information through contact dynamics as well as through the
collision detection routine. We obtained manipulation plans
that featured a wide variety of low-level manipulation skills:
sliding, tilting, reorienting, and lifting the object.

D. Future Work

In my ongoing and future research, I would like to expand
on my previous work to develop learned MPC-based policies
for robotic locomotion and manipulation. The recent success
of sampling-based MPC policies [12] combined with policy
optimization techniques [26, 24] could enable manipulation
and locomotion behavior that successfully complete long-
horizon tasks.

Additionally, I am eager to build a learned physics engine.
This idea is driven by several motivations. First, it could better
capture the physics by learning from real-world data, building
accurate contact models without requiring time consuming
parameter tuning. Second, when we simulate a specific robot
for millions of steps, considering that each simulation step is
solving an optimization problem, we are solving millions of
highly related optimization problems. Leveraging amortized
optimization [1] to learn components of the solver would, I
believe, lead to substantial improvement in both reliability and
speed. Furthermore, a learned physics engine would require
simpler optimization and linear algebra routines than the cur-
rent predictor-corrector interior-point solver. This would ease
the deployment onto the latest GPU architectures unlocking
key performance gains.
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